今天来聊聊关于复数的概念ppt,复数的概念的文章,现在就为大家来简单介绍下复数的概念ppt,复数的概念,希望对各位小伙伴们有所帮助。
1、复数是形如 a + b i的数。
2、式中a,b 为 实数,i是一个满足i^2 =-1的数,因为任何实数的平方不等于-1,所以i不是实数,而是实数以外的新的数。
3、在复数a+bi中,a称为复数的实部,b称为复数的虚部,i称为虚数单位。
4、当虚部等于零时,这个复数就是实数;当虚部不等于零时,这个复数称为虚数,虚数的实部如果等于零,则称为纯虚数。
5、由上可知,复数集包含了实数集,因而是实数集的扩张。
6、 复数有多种表示形式,常用形式 z = a + b i叫做代数式。
7、此外有下列形式。
8、 ①几何形式。
9、复数 z = a + b i 用直角坐标平面上点 Z ( a , b )表示。
10、这种形式使复数的问题可以借助图形来研究。
11、也可反过来用复数的理论解决一些几何问题。
12、 ②向量形式。
13、复数 z = a + b i用一个以原点 O 为起点,点 Z ( a , b )为终点的向量 O Z 表示。
14、这种形式使复数的加、减法运算得到恰当的几何解释。
15、 ③三角形式。
16、复数 z= a + b i化为三角形式 z =| z |(cos θ +isin θ ) 式中| z |= ,叫做复数的模(或绝对值); θ 是以 x 轴为始边;向量 O Z 为终边的角,叫做复数的辐角。
17、这种形式便于作复数的乘、除、乘方、开方运算。
18、 ④指数形式。
19、将复数的三角形式 z =| z |(cos θ +isin θ )中的cos θ +isin θ 换为 e i q ,复数就表为指数形式 z =| z | e i q , 复数的乘、除、乘方、开方可以按照幂的运算法则进行。
20、 复数集不同于实数集的几个特点是:开方运算永远可行;一元 n 次复系数方程总有 n 个根(重根按重数计);复数不能建立大小顺序。
相信通过复数的概念这篇文章能帮到你,在和好朋友分享的时候,也欢迎感兴趣小伙伴们一起来探讨。
版权声明:免责声明:本文来源网友投稿及网络整合仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。投诉邮箱:1765130767@qq.com.